Loading [MathJax]/extensions/tex2jax.js
Q-Q-plotDemo.py
1 #
2 # example script showing how to use opalsHisto to generate a quantile-quantile plot
3 #
4 # script parameters: <inputfile> [1|0]
5 # <inputfile>: odm or rasterfile
6 # 1|0: flag if plot window should be shown
7 #
8 import sys
9 import opals
10 from opals import Histo
11 import matplotlib.pylab as pl
12 import numpy
13 from scipy.stats import norm
14 
15 def generate_plot(filename, showPlot = False, plotFile = 'QQplot.png'):
16  # used probabilities for quantile-quantile plot
17  probabilities = [0.01, 0.05, 0.25, 0.50, 0.75, 0.95, 0.99]
18 
19  # compute quantile values based on normal distribution
20  dist = norm()
21  quNorm = [ dist.ppf(p) for p in probabilities]
22  quNormArr = numpy.array(quNorm)
23 
24  # compute histogram including quantiles from
25  his=Histo.Histo()
26  his.commons.screenLogLevel = opals.Types.LogLevel.error
27  his.inFile = [filename]
28  his.probabilities = probabilities
29  his.exactComputation = True # to get exact quantile values
30  his.plotFile = "off" # do not create a svg file
31  his.run()
32  stats = his.histogram[0]
33 
34  # get quantiles of data
35  quantiles = stats.getQuantiles()
36  alpha, qu = zip(*quantiles)
37  qu = list(qu) # convert tuple to list
38  quArr = numpy.array(qu)
39 
40  # compute trend line
41  z = numpy.polyfit(quNormArr, quArr, 1)
42  p = numpy.poly1d(z)
43 
44  # generate q-q plot
45  pl.plot(quNormArr, quArr, 'bo-', ms = 5, mec = 'b', mfc = 'w') # plot quantiles
46  pl.plot(quNormArr, p(quNormArr), color="purple", linewidth=2, linestyle="--") # plot trend line
47  pl.title('Q-Q Plot')
48  pl.xlabel('Quantiles of standard normal distribution')
49  pl.ylabel('Quantiles of residuals')
50  pl.grid(True)
51 
52  # build legend text (insert line feed after 4 numbers)
53  text = 'Quantiles:'
54  lf_after = 4 # line feed after 4 numbers
55  for idx in range(0,len(probabilities),lf_after):
56  text += '\n' + ', '.join(map(str,probabilities[idx:idx+lf_after]))
57  pl.text(0.8, min(qu), text, backgroundcolor = 'w')
58 
59  # show and save plot
60  if showPlot:
61  pl.show()
62  if plotFile:
63  pl.savefig(plotFile, format='png') # store plot as png file
64 
65 
66 if __name__ == "__main__":
67  inputFile = None
68  showPlot = False
69 
70  if len(sys.argv) == 1:
71  print("ODM/Raster file misssing")
72  sys.exit(-1)
73  else:
74  inputFile = sys.argv[1]
75 
76  if len(sys.argv) > 2:
77  showPlot = bool(int(sys.argv[2]))
78 
79  generate_plot(inputFile, showPlot)
80 
81